

Fiber Optic Sensor for Industrial Process Measurement and Control (CPS# 1604)

Peter DeBarber and Tom Jenkins

Materials, Sensors & Automation, and Glass Project Review

June 21-24, 2004

Fiber Optic Sensor for Industrial Process Measurement and Control (CPS# 1604)

Goals: Develop non-intrusive temperature and chemical sensor - maintaining high accuracy, large dynamic range, affordability, ruggedness, and high temporal resolution.

Challenge: Sensor based on near IR DFB lasers show promise but lack sensitivity for certain applications.

Benefits: DFB lasers operate at room temperature, fiber optic compatible, rapid measurement, minimal optical access required.

FY05 Activities: Develop robust calibration procedure, demonstration testing at industrial site/s, launch first generation commercial product.

Participants:

MetroLaser, Inc.
Bergmans Mechatronics LLC
GE EERC
UC Irvine

Fiber Optic Sensor for Industrial Process Measurement and Control (CPS# 1604)

Barrier-Pathway Approach

Barriers

- Difficult to measure temperature and chemicals in high temperature combustion applications
- Lack of robust, affordable, rapid sensors for control and monitoring tasks

Pathways

- Development of nonintrusive fibercoupled optical sensor
- Spectral modeling (H₂O) to find match with commercial DFB laser sources
- Laboratory testing to validate model
- Industrial site demonstration testing
- Commercialization

Critical Metrics

- Temperature Range: 900– 2500K
- H₂O levels: 60 ppb/m
- Accuracy: +/- 50K
- Sample rate: 200 Hz
- Path length: 30 cm 10 m

Potential Benefits

- Active combustor control
- Increase efficiency
- Minimize pollutants
- Process quality control

Motivating Example

Type K thermocouple failing near 2000K in methane/air flame

TC Shortcomings:

- Intrusive
- Fragile
- Time lag
- Radiation errors
- Conduction errors
- Frequent replacement

• ...

Solution

Tunable diode laser absorption spectroscopy

Near IR DFB Laser:

- Non-intrusive
- COTS telecom technology (inexpensive, ~\$100/laser AND available)
- Room temperature operation (no cryogenics required)
- Robust (fiber and free space compatible)
- High temporal resolution (~50 μs)
- High accuracy (~2.5%); high precision (~1.0%)
- Minimal optical access (line-of-sight)
- High spatial resolution (normal to beam)
- Large dynamic range (spanning combustion temperatures)
- Capability for higher pressures (< 20 atm)
- Self calibrating (spectral database)

Background Theory

Tunable diode laser absorption spectroscopy

Scanned Wavelength Absorption Measurement:

- <u>Direct absorbance</u> or
- Wavelength modulation spectroscopy

$$\frac{I}{I_0} = \exp(-k_{v,i}L)$$

Temperature Extraction

- Absorbance at line center measured for two transitions
- Ratio is a function of only temperature

$$R = \frac{k_{\nu_0,1}}{k_{\nu_0,2}} = \frac{PXS_1(T)\phi_{\nu_0,1}}{PXS_2(T)\phi_{\nu_0,2}} = \frac{S_1(T)}{S_2(T)}$$

$$R = \frac{S_{0,1}}{S_{0,2}} \exp \left[-\frac{hc(E_1"-E_2")}{k} \left(\frac{1}{T} - \frac{1}{T_0} \right) \right]$$

R&D Approach

Water vapor spectral line selection

- Line pair spacing
- Insensitivity to ambient absorption
- Wavelength availability
- Combustion temperature sensitivity

HITRAN spectral Simulation

HiTEMP – your mileage may vary,...

Experimental Validation – static cells, flat flames,...

Prototypes – several versions

Demonstrations

1st Generation Product

Spectral Simulation Example

Observed Spectrum

Temperature Calibration Curve

Progress to Date

- Identified relevant absorption features and simulated spectra
- Verified experimentally HITRAN database and simulated spectra
- Demonstrated a two-laser strategy on industrial chemical vapor deposition torch
- Demonstrated a single-laser strategy on industrial combustor
- Simultaneously accessed two spatial channels
- Demonstrated excellent correlation to chemiluminescence data
- Demonstrated high temporal and spatial resolutions
- Designed and built a demonstration system
- Entered into distributorship agreement

Combustion Chemical Vapor Deposition Application

Combustion Chemical Vapor Deposition Application

Excellent agreement up until TC failure

Agreement within 10%; discrepancy increases towards nozzle

Low NOx Combustor Application

Diode Laser

Chemiluminescence

EA = excess air, above stoichiometric

FS = fuel split/staging, premix behavior < 0 < diffusion flame behavior

Low NOx Combustor Application

Next to nozzle

Downstream from nozzle

Clear differentiation between staging regimes close to nozzle; not resolvable with chemiluminescence

High Temperature Calibration

Demonstration System/1st Generation Product

Function generator

Laser and A/D board

Laser diode controller

Commercialization

Distributorship agreement:

Bergmans Mechatronics LLC

John Bergmans, Principal Engineer / Owner 101 Springfield Lane Madison, AL 35758

Tel: 256-694-3071 Fax: 256-461-8494

e-mail: jbergmans@bergmans.com

web: www.bergmans.com

Future Refinements

- Simplify electronics package
- •Add multipass cell (demonstration and calibration)
- Add channel for CO (see plot below)

Upcoming Demonstration Testing

- Steam methane reformer (fuel cell application)
 - •GE EERC, Irvine, CA
 - •Simultaneously measure H₂O and temperature at the inlet and outlet
- Coal-fired power plant application
 - •EPRI, TVA ,Kingston, TN
 - •Temperature at one location
- Boiler simulator
 - •GE EERC, Irvine, CA
 - •Temperature at multiple locations

Acknowledgements

- Gideon Varga, DOE
- Vince McDonell, UC Irvine
- Shawn Barge and Pete Maly, GE
- •Ron Hanson's group, Stanford

This research was supported, in whole or in part, by DOE Grant No. DE-FG03-99ER82828 and such support does not constitute an endorsement by DOE of the views expressed in this article.